Use of deep lights and feeding, and skirts for lice infestation prevention

Samantha Bui, Henrik Trengereid*, Lars Stien, Frode Oppedal

This trial was hosted by *Centre for Aquaculture Competence (CAC), which is a joint venture for large-scale R&D between Mowi, Skretting and AKVA Group.

The Sea Lice Issue

- Effect on wild populations of salmon
- Economic cost
- Environmental impacts
- Social costs

Increased focus on non-chemical treatment/prevention methods

Experimental set-up

Group B
Cleanerfish
+ Functional Feed

Group C Cleanerfish

+ Functional Feed

+ Sub lights/feed

Group D

Cleanerfish

+ Functional Feed

+ Sub lights/feed

+ Skirt

The Salmon Welfare Index Model

+ lice

+ condition factor

Back-calculating attachment dates using temperature-development rate model for lice

Back-calculating attachment dates using temperature-development rate model for lice

Back-calculating attachment dates using temperature-development rate model for lice

Did fish with the Subfeeders swim deeper?

Infestation vs swimming depth

Mobile lice

Mobile lice

	STITUTE	
T.	PINE RESE	

Group	Number of treatments
Α	14
В	16
С	14
D	14

No difference in the number of delousing events

Initial conclusions:

- Over all, welfare is not affected by the provision of functional feed, or the installation of deep lights/deep feeders or lice skirts. In fact, cages that had deep lights + deep feeders had improved welfare scores during some periods
- Cages that had all treatments (D group) acquired the least lice over the year
- However, this did not translate to a decrease in delousing treatment frequency, with equal number of delousing events required.
- This may be due to the efficiency of cleaner fish in D groups

Next steps – flexible prevention:

• Testing cage prevention technologies but with flexible implementation that responds to environmental conditions.

Fosså 2018-2019

Thank you!

henrik.trengereid@mowi.com samantha.bui@hi.no

The report from HI can be found on hi.no
Rapport fra Havforskningen

The final FHF report is currently in preparation

