Generic wall model with integrated heat exchanger

Creativ SP2

D2.2.1

Surface temperature control

- Many systems use actively cooled tanks to control exothermic processes.
- Heat to be removed can be recovered at an temperature level suitable for energy recovery
- Such processes have often strict requirement on wall temperature

Modeling alternatives

- FEM (finite element modeling)
 - Accurate calculation of conduction
 - Calculation of convective heat transfer (working fluid side) challenging
 - Calculation power intensive, typical grid 1M nodes
- "Physical" model (our choice)
 - Convective heat transfer based on established correlation (20 years experience at SINTEF)

Much less calculation power intensive (typically 1000 nodes) > parametric studies are easier

Conduction part must be carefully tested

Outisde

Wall model elements

- Each part of the wall consist of 3D-blocks
- Behaviour for heat conduction and heat capacity

Transient behaviour capability

Wall node - external connections

Wall node - internal models

Connection ports:

Integrated heat exhanger

- Heat exchanger modeled as embedded pipes connected to array of wall blocks
- Current version use Modelica's built-in thermodynamical property data for a range of fluids

Embedded pipe model

 Heat conduction in 2 dimensions, fluid flow in the third

- Fluid flow characterized by
 - Friction on pipe wall
 - Heat transfer across pipe
 wall 4 directions (based on correlations)
 - Enthalpy change of fluid volume
 - Transient energy and mass balance of fluid volume

HX-model

- Wall segment with integrated fluid pipes
 - => Heat exchanger
- Assembled of wall nodes and embedded pipes
- Configuration options include:
 - Number of tube rows
 - Number of tubes per row
 - Number of flow passes per row
 - Tube/pass connection config:
 - Simple: Crossflow/Counterflow/cocurrent flow
 - Advanced: Any configuration or combination

Verification vs. Quickfield

- Quickfield is a commercial finite element software
- Good agreement in heat flow
- Modelica model seem to return a more realistic temperature profile around pipes

Note: Slightly different color scale in the pictures

	n Nodes	Qwest	Qeast	Qpipes
Quickfield [W]	1206	1825	-431	1394
Modelica [W]	1296	1772	-391	1381
Abs. Deviation [W]		53	-40	13
Rel. deviation		2.9%	9.2%	0.9%

Verification vs. Quickfield

- Analysis of accuracy vs. node count
- 2D analysis

	n Nodes	Qwest	Qeast	Qpipes	Dev. Qwest	Dev. Qpipes
Quickfield [W]	8715	1822	-426	1396	-	-
Modelica [W]	81	1695	-382	1313	7 %	6 %
	324	1750	-386	1364	4 %	2 %
	729	1765	-389	1376	3 %	1 %
	1296	1772	-391	1381	3 %	1 %
	2916	1778	-393	1385	2 %	1 %
	6561	1782	-394	1388	2 %	1 %

Good match from relatively low node count

Assembled wall+HX model

- Several wall sections with different material properties
- Integrated heat exchanger with selected fluid and tube configuration
- Investigation of control capability of a wall embedded heat exchanger
- Investigation of the potential for heat recovery

Models developed during this work:

(including pre-requisites for main models)

