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INTRODUCTION

The process of freezing fish to a block in a vertical plate
freezer (see Figure 1) is studied.

Liquid ammonia (NH3) at a minimum of 235 K is used as
the cooling medium.

A pump forces the ammonia through the plate freezer, in
which it partly vaporizes due to the heat taken off the fish
block.

The amount of heat added to the ammonia is removed in a
compression/condensation/throttling - process.

Thus the freezing process consists of 2 loops (see Figure 2):

� An inner transfer loop, where heat is transferred from the
fish block to the ammonia

� An outer regeneration loop, where the added heat is re-
moved from the ammonia

In practice, the freezing of fish in vertical plate freezers is
done by using experience and rules of thumb to estimate the
time until the interior is frozen down to at least −18 oC.

FIGURE 1: Vertical plate freezer

In this study, we aim to contribute to a more energy efficient
way of freezing fish in vertical plate freezers by applying
mathematical modeling and optimization tools.
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FIGURE 2: The cycle process with inner and outer loop

MODEL

The freezing process, that is the dynamics of the temperature
T , is modeled by the heat equation, a nonlinear parabolic
partial differential equation (PDE) (see [4] for an overview).
For simplicity, and without loss of generality, only two spa-
tial dimensions, x and y, are considered:
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where ρ (T ) denotes density, c(T ) specific heat capacity at
constant pressure and λ (T ) thermal conductivity.

Two basic phenomena have to be included in the model of
the system, namely

� Latent heat of fusion which is modeled by adapting the pa-
rameters kT (T ) and k (T ) with the apparent heat capacity

method (see [1] and [3])

� Basic laws of thermodynamics (especially the zeroth law)
which is modeled by a function that turns off heat ex-
change, when the temperature of the ammonia equals the
temperature of the boundary layer of the fish block

To solve the problem numerically, discretization is neces-
sary. Both, center and forward difference approaches are
chosen, where n discretization steps in x-direction and m

discretization steps in y-direction result in m×n ODEs (see
Figure 3).

Neumann boundary conditions define heat flow through the
boundaries:

� In x-direction: Optimization variables / inputs ui defining
heat exchange with the ammonia

� In y-direction: Heat exchange with air (top, y = 0) and
perfect isolation (bottom, y = H)

For simplicity only one input is defined as optimization
variable. Its capacity is reduced for each cell defined in
y-direction, meaning that there is full capacity at the top cell
and about 64% capacity at the bottom cell.
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FIGURE 3: Discretization scheme

RESULTS

Simulations were accomplished with ACADO for MAT-
LAB developed by M. Diehl and co-workers, see e.g. [2].

The following settings were used for the simulations:

� n = 9, m = 5 and simulation parameters as used in [1]

� min
u1

∫ τ
0 (Ti, j −Tre f ,i, j)

T
Q(Ti, j −Tre f ,i, j) + R(u1−u1,re f )

2
dt

is the cost function where Q is diagonal and R is a scalar

� The function that turns off heat exchange is defined as
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� The heat exchange with air is constant q̇Air = −0.01 =
kAir A

TBoundary−TAir

∆y
and the heat exchange with the bottom

wall is q̇Bottom = 0

� The piecewise constant optimization variable u1 is con-
strained by upper and lower bounds

� Single shooting with 300 equidistant time instances
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FIGURE 4: Input u1 without weighted reference (R= 0) and
states at different positions y and x
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FIGURE 5: Input u1 with weighted reference (R 6= 0,
u1,re f = 0) and states at different positions y and x

DISCUSSION

The above presented results were achieved by several sim-
plifications:

� The initial condition is equally distributed (Tinit = 283 K)

� Consideration of two spatial dimensions without loss of
generality

� The plate freezer is perfectly isolated at the bottom

� The heat exchange with air is constant and not depending
on temperature difference

� The values of the simulation parameters are approxima-
tions of the real values

� The fish in between the freezing plates is considered as a
homogenous mass without any entrapped air

� Only one input is defined as optimization variable

Future work:

� Definition of a unique input for any discretization cell in
y-direction

� Constraints on the gradients of the inputs ⇒ new opti-
mization variables

� Development of a closed loop description with tempera-
ture feedback to get a more accurate calculation of the heat
exchange

� Validation of the simulation results by measurements

� Definition of a 3-dimensional description of the process

� Consideration of more than one plate freezer cell and
many plate freezers in parallel

� Integration of terminal constraints
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