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Abstract The short-term relationships between the supply of farmed salmon and its
market and biological determinants are not fully understood. In this article an econo-
metric model of salmon supply is estimated exploiting monthly data on Norwegian
salmon aquaculture. Our estimates indicate that supply has shifted over time due to
innovations in several areas. We find that the price of farmed salmon has a limited
effect on supplied quantity, giving a highly inelastic short-run supply elasticity. The
biomass and seasonal factors are the main determinants of shifts in salmon supply in
the short term.
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Introduction

Salmon, together with shrimp, are the leading aquaculture species, as these two species
make up about 30% of global production value. Several species of salmon is farmed, with
Atlantic salmon as the most successful. In 2010, Atlantic salmon represented about 75%
of the approximately two million tonnes of farmed salmon production. The main reason
for the growth in salmon production has been a tremendous productivity growth amplified
by a substantial demand growth (Asche 2008). On the supply side, innovations in many
areas have led to increased productivity and reductions in unit production costs. This
process has been investigated in a number of productivity studies (Tveteras 1999, 2000;
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Guttormsen 2002; Tveteras and Heshmati 2002; Andersen, Roll, and Tveteras 2008; As-
che, Roll, and Tveteras 2009; Nilsen 2010; Vassdal and Serensen Holst 2011). Tveteras
(2002) and Tveteras and Battese (2006) also show that there are external economies of
scale in salmon aquaculture. However, while these studies provide important insights into
the effect of changed input factor composition, scale economies, technological change,
inefficiency, and production risk, little attention has been given to their influence on out-
put and the effect of price changes on production. The only partial exceptions are Asche,
Kumbhakar, and Tveteras (2007) who derive an estimate of supply elasticity from a cost
function, and Andersen, Roll, and Tveteras (2008) who estimate short-run, as well as
long-run, supply elasticity based on a restricted profit function.

Hence, we have a limited understanding of short-term supply determinants for salm-
on, and in particular quantitative relations between the harvest (supply) of farmed salmon
and variables such as the salmon market price, salmon feed price, biomass of live fish in
the sea, and sea temperature. A main reason for this lack of data is that all productivity
studies are conducted using annual data. The only variable that is readily available at a
high frequency is price. Price has been used to investigate the relationship between differ-
ent weight classes (Asche and Guttormsen 2001), price volatility (Oglend and Sikveland
2008), and forecasting (Vukina and Anderson 1993; Guttormsen 1999). Econometric
analyses of short-term market dynamics in the salmon market using monthly data have
focused on the demand side or pure price effects, as data at a higher frequency have only
been available downstream. !

We also know little about how technological and organizational innovations in the
salmon aquaculture industry have influenced the supply of salmon over time. Salmon
prices exhibit substantial volatility in the short and also longer run (Oglend and Sikveland
2008), indicating that the ability of salmon supply to respond to price fluctuations is limit-
ed. Innovations in sales and increased use of contracts can limit supply response (Kvalay
and Tveteras 2008; Larsen and Asche 2011).?

This article exploits a unique data set of Norwegian salmon aquaculture to examine
which factors influence the supply of salmon. The uniqueness applies both to the time
frequency and variables of the data set. The data set is monthly, and in addition to price
data we also have access to biomass and temperature data as determinants of supply. This
allows us to specify a supply equation that accounts for economic as well as biophysical
factors, and thereby not only to control for the influence of different factors on short-term
dynamics, but also to assess the relative importance of those factors. We know from the
literature on harvesting models that at any point in time there is much more salmon avail-
able in the pens than what is being harvested (Guttormsen 2008), and that the supply
chain can create distortions between consumer demand and the derived demand facing
the salmon farmer (Asche, Roll, and Tveteras 2007).

The article is organized as follows. First we provide a background discussion on the
production and supply of farmed salmon. Next, we present the econometric model speci-
fication, followed by empirical results. Finally, we provide a summary and conclusions.

The Production Process

To understand what factors influence salmon supply, and how those factors influence sup-
ply, it is useful to know the biological production process in salmon farming. The process
can be divided into three steps: production of brood stock, roe, and fry; production of

'However, several studies have shown that long-run demand elasticities have a higher magnitude than short-run
elasticities (Asche, Salvanes, and Steen 1997) and investigated for market integration (Asche, Bremnes, and
Wessells 1999; Asche et al. 2002) and market power (Fofana and Jaffry 2008).

2 Short-run supply response can also be influenced by the product mix (Asche 2009).
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smolts;* and production of farmed fish (Asche and Bjerndal 2011). These three stages are
generally undertaken in distinct plants. We are concerned with the production of farmed
fish; i.e., the last step in the biological production process.

Smolts are transferred from a producer that can be independent or integrated into a
larger company and released into pens between spring and early fall. A cohort of salm-
on is kept in the pens and fed for a period 16—22 months before harvesting. The growth
rate of the fish is mainly determined by feeding intensity and sea temperature. As our
focus is the short-run production process, we will treat the number of smolts released
into the pens, as well as the pens themselves and other capital equipment, as given. A
detailed description of the biological production process can be found in Guttormsen
(2008) and Asche and Bjerndal (2011). Given the number of smolts released, the key
parameters are mortality and growth rates. The stock of salmon in cohort ¢ at the end of
month ¢ is defined by:

Wc,tnc,t = (l_mc,t_hc,t)(l + gc,t)wc,t—lnc,t—lv

where g. ; is the growth rate in month ¢, m,. ; is the mortality rate of cohort ¢ in month ¢,
he ris the harvest rate in month ¢ (with the restriction (1— met=he ) 0),n 41 is the initial
number of fish in cohort ¢ in month #, and We g1 is the initial average weight of the fish.*

Production in a given period is defined as the change in total biomass from the begin-
ning to the end of the period plus the harvested biomass in the period. It is interesting to
note that, in general, harvest is not equal to the level of production. The above definition
also implies that production can be negative for a period; for instance if the mortality rate
is extremely high. The recent disease outbreak in Chilean salmon aquaculture provides a
clear example of such a situation (Asche et al. 2009).

Our only variable input factors are feed cost and the value of time. Feed cost makes
up almost 60% of total cost, and Guttormsen (2002) argues that in the short run, it can
be treated as the only variable factor. However, the actual quantity of feed used in the
production process also depends to some extent on stochastic biophysical variables (or
shocks), such as disease and water temperature. If the survival rate of the fish is lower
than expected; e.g., due to unexpected disease losses, the feed consumption rate will also
be lower than expected. If sea temperatures during the year are lower than expected, then
feed consumption will also be less, since the appetite of the fish depends on sea tempera-
ture (Austreng, Storebakken, and Asgard 1987). The time preference is included because
in all harvesting models this is a key parameter in determining when to harvest the fish.

The salmon farming company’s problem is to maximize the net present value (NPV)
from its operations. Since risk is present in salmon farming, the objective is to maximize
the expected utility of NPV if the decision maker is risk averse. If the decision maker is
risk neutral, maximiation of the expected NPV should be the objective (Kumbhakar 2002;
Kumbhakar and Tveteras 2003; Forsberg and Guttormsen 2006; Guttormsen 2008).

Over time, the Norwegian salmon farming industry has faced different sets of
regulations aimed at limiting production both at the industry and farm levels (Kinnucan
and Myrland 2002; Tveteras 2002; Asche and Bjerndal 2011). Since the early days of
the industry, the Norwegian government has limited the total number of farms through
regulation of the number of farm production licenses issued. In the 1980s the government
introduced a restriction on total fish cage volume for each farm. In 1991 a fish density
restriction per cubic meter of cage volume was introduced. Together, the two regulations
limited total production at a farm site. In 1996 the restriction on production at the farm

3 Smolts are juvenile salmon that are able to adapt to seawater; i.e., they have been through the biological pro-
cess called smoltification.

* This definition of production implies that salmon in the same cohort is homogenous; i.e., the initial weight and
growth rate are identical across all individuals for all periods.



346 Asheim, Dahl, Kumbhakar, Oglend, and Tveteras

and industry levels was strengthened when a farm-level feed quota regulation was intro-
duced that stated the maximum volume of feed to be used at the farm through the year. In
2005 the cage volume and feed quota restrictions were replaced with a ‘maximum allow-
able standing biomass’ (MASB) restriction that stated the maximum volume of live fish
(in tonnes) that could be present in the cages at any time. Unlike previous regulations, this
restriction would force the salmon farmer to harvest fish whenever the standing biomass
exceeded the MASB level .’

The consequence of these regulations is that fish biomass is a quasi-fixed factor in the
production process. A salmon company has to take into consideration that available bio-
mass capacity and pen volume is needed for the new cohort each year, and the farmer has
to form expectations on salmon prices in the relevant periods when making his harvest-
ing profile decision (Forsberg and Guttormsen 2006; Guttormsen 2008). In some periods
salmon prices have exhibited large short-run fluctuations, as depicted in figure 1, and con-
sequently the choice of harvesting profile can have significant effects on the profitability
of salmon farms.
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Source: NOS Clearing <http://www.nosclearing.com>.

Salmon farming can be characterized as a competitive industry with many compa-
nies supplying a fairly homogeneous commodity (Asche and Bjerndal 2011). There are
at least three important observations concerning the development of salmon prices over
time. First, the productivity growth from the 1980s that is reflected in declining real unit
production costs also contributed to a reduction in real prices (Asche 2008). Second, as
shown in figure 1, real salmon prices have not continued to trend downward after 2000,

° The regulatory system has changed over time, and various measures have been used to regulate the size of
each production license (Asche and Bjerndal 2011). However, it should be noted that these measures do not
reduce the size of each plant, as several licenses can be operated at the one plant. This has led to the number of
plants in Norway being reduced over time.
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as the salmon farming industry has not managed to keep up its pace of cost reducing
innovations (Larsen and Asche 2011). Third, there are substantial cycles around the long-
run price trend line, as shown by Oglend and Sikveland (2008).

The main cause for high price volatility is inelastic short-run supply, which is likely
to be constrained because of the nature of the salmon production process. This implies
that prices can have limited effect on the supply of salmon in the short-run. On the other
hand, market prices can have a much larger effect on fry and smolt production and on
grow-out farms’ smolt purchase decisions. However, the effect of these decisions on the
supply and prices of salmon is typically not observed until 1.5-2 years later. The inelastic
salmon supply in the short run is supported by Andersen, Roll, and Tveteras (2008), who
found a short-run output price elasticity of only 0.05, based on econometric estimates on
a large panel of annual observations of Norwegian salmon farms. They estimated long-
run supply elasticity in an output price of 1.40, suggesting a much higher response in the
long run, which is in line with our arguments above.

Some companies have entered into contracts with buyers who specify both the timing
and volume of deliveries (Kvalay and Tveteras 2008; Larsen and Asche 2011). These contrac-
tual obligations obviously have some impact on the harvest decision. In general, contractual
obligations reduce the responsiveness of supply to changes in the spot price of salmon.

Future growth potential and sexual maturity of the salmon cohort should influence
the harvest decision. As the salmon grows above the minimum harvest weight of 2-3 kg,
the growth rate potential will, on average, tend to decline, which means that the marginal
economic benefit (in terms of NPV) of keeping and maintaining the biomass capital de-
clines and eventually becomes negative. The increased risk of sexual maturation as the
fish gets bigger, which means a value reduction for the fish, gives the farmer added incen-
tives to harvest.

Sea temperature and other biophysical conditions also influence production and pro-
duction decisions. The growth rate of salmon increases with sea temperature up to some
level. Oxygen consumption also increases with rising sea temperature, while the avail-
ability of oxygen in the seawater decreases. When the sea temperatures are sufficiently
high, the farm may face constraints in terms of oxygen availability. For high summer
temperatures, the salmon may grow at a slower rate and become more susceptible to
stress-related diseases. This can give incentives to harvest during the summer months
(Reithe and Tveteras 2000). During the cold winter months, the low growth rates for fish
of harvest-ready weight may also provide incentives to harvest.

Other factors influencing supply are harvesting and processing costs and capacities
(Kvalegy and Tveteras 2008). There are economies of scale in several of the processes
from harvesting to transportation to primary processing. This gives farmers incentives to
reduce the number of harvests for a cohort of fish. On the other hand, there may also be
capacity constraints in transportation vessels and processing plants that limit how much
fish can be received in the short run.

All these factors imply that the salmon farms have limited intertemporal flexibility in
their harvesting decisions after they have released smolts into the pens, and that farms of-
ten face a time window of only a few months during which the fish must be harvested. In
particular, there is limited flexibility to respond to expectations on future price increases
or reductions.

Salmon Supply Model Specification

Nerlove (1956, 1958) has provided the most influential model of farmer supply. He pre-
sented a partial adjustment-adaptive expectations model for selected crops. The so-called
Nerlove model, hypothesizing farmer responses in terms of price expectations and/or
partial area (or production) adjustments, has been adopted, modified, and extensively
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revised by many later authors that have examined supply response in agriculture (Askari
and Cummings 1977).

For the econometric estimation of salmon supply models, the empirical literature on
livestock supply may be more relevant in several respects than studies that focus on crop
supply. Econometric studies on livestock supply have been provided by Heien (1975) on
pork and Epple and McCallum (2006) on poultry. Asche (2009) provided estimates of
wild fish supply responses.

Nerlove’s model focused on the supply side of an agricultural commodity market.
However, it is natural to specify a model that also accounts for the demand side and possibly
other relations that determine market quantity and price outcomes. As maintained by Epple
and McCallum (2006) specifying such models is not a trivial exercise. Apple and McCallum
surveyed 26 textbooks for simultaneous equation models of supply and demand and found
that it is not easy to obtain proper signs and statistical significance for crucial parameters.

The monthly dataset we will analyze has been collected by the Norwegian Seafood
Export Council, Kontali AS, and Marine Harvest AS.° It spans the time period from
January 1995 to December 2007, a total of 168 observations. Some variables are missing
observations resulting in a somewhat smaller set of 135 observations.

Our model accounts for the influence of biomass, as discussed previously, the simul-
taneous determination of price and quantity by the demand and supply side, and changes
in the price margins in the international value chain. Hence, we estimate an econometric
system of four simultaneous dynamic equations: (1) Norwegian salmon harvest supply,
(2) biomass of salmon at Norwegian farms, (3) global demand for Norwegian salmon,
and (4) ‘price margin’ for Norwegian salmon, as specified in equations (1)—(4) below:

12
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© The data set was collected and compiled in a joint research project with these companies funded by the Norwe-
gian Research Council.
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Subscript ¢ represents time (in months) and represents the month of the year (m=1 is
January, m=2 is February, etc.). In the third equation subscript ¢ represents country (Nor-
way, Chile, UK, and Canada). The choice of lags for the explanatory variables has been
determined by tests of individual significance and autocorrelation.

Supply, equation (1), is specified with harvest quantity (H) as the dependent variable.
The endogenous variable harvest quantity is included as a lagged explanatory variable to
capture differences in short-run and long-run supply responses to changes in explanatory
variables. In the supply equation, harvest quantity is dependent on the sales price at farm
gate in Norwegian kroner (P), feed price (Py) in the previous month, sea temperature
(C), and biomass of live fish in the sea cages, (B), in the previous month. As predicted
by theory, we expect a positive relationship between sales price and salmon supply, and
a negative relationship with the price of the most important input in terms of cost share,
feed price. We also expect a positive relationship between the biomass of live fish in the
cages and salmon supply. A high biomass may give incentives to harvest due to high,
unsustainable fish densities in the cages, or because the biomass approaches the govern-
ment’s regulatory constraints. It should also be noted that the trend development of the
biomass of live fish over time, which can be viewed as the farmers’ biological capital, is
correlated with the development of the amount of fixed capital in production equipment,
and thus the production capacity of the salmon farmers.

Monthly dummy variables, (D), are incorporated as to capture seasonal factors that
influence supply, but which are not captured by the other variables. Time trend variables,
(), are also included to capture the effects of innovations (technological change) over
time on salmon supply. The rate of technical change is defined as e;s = a, + 2a,t and e;;, =
(a, + 20,t)/(1 — ag,) in the short and long run, respectively.

We use a double-log supply model. This implies that the estimated parameters, with
the exception of those associated with the dummies and time trend, can be interpreted as
short-run elasticities. The own-price elasticity of salmon supply is e, = o, and ey, = ap /
(1 — ays,) in the short and long run, respectively. Analogous short- and long-run elasticity
measures apply to the other explanatory variables feed price, biomass, and temperature.

Biomass, equation (2), has biomass of live salmon in farm cages lagged one month
as the dependent variable. Explanatory variables are the sales price at the farm gate in
Norwegian kroner (P), sea temperature (C), and biomass of live fish (B). Furthermore,
monthly dummy variables are included to account for seasonal effects on the stock of live
salmon not captured by other variables. Time trend variables are also included to account
for effects of innovations on the stocking of live fish.

Supply and demand quantity and price are jointly determined in the salmon market. As
the third equation, we have consequently included global quantity demanded of Norwegian
salmon. Salmon demand and markets have been analyzed in several studies (Wessells and
Wilen 1994; Asche, Salvanes, and Steen 1997; Asche, Bjorndal, and Salvanes 1998; Eales
and Wessells 1999; Xie, Kinnucan, and Myrland 2009). The demand for Norwegian Atlan-
tic salmon is specified as a function of the own price of Norwegian salmon and the prices
of Atlantic salmon substitutes from Chile, UK, and Canada in USD (PE). Finally, the con-
sumers’ salmon budget is represented by the global expenditures on salmon in USD (/).

The price margin, equation (4), is specified with sales price at farm gate in Norwe-
gian kroner as the dependent variable. Among the explanatory variables is the Norwegian
export price in USD (PE) and the exchange rate between Norwegian kroner (NOK) and
USD (V).” As in the other equations we have included monthly dummy variables and
time trend variables to account for seasonal effects and structural changes over time, re-
spectively. We calculate the price transmission elasticity, which is given by & = 1/(( Oppy +
Open1)/(1 — 65,)), to test the hypothesis that it is different from one.

7 Asche and Tveteras (2008) analyzed the influence of exchange rates on international fish trade, including
salmon.
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Our system is estimated by three-stage least squares (3SLS). The endogenous vari-
ables in the model are Norwegian harvest quantity supply and demand (H° and HP), farm
gate price (P), biomass (B), and Norwegian export price in USD (PEy).

Empirical Results

Although we estimate a system that also includes a biomass equation, a demand equation,
and a margin equation, our focus is on the estimates from the supply equation. Hence, our
discussion of the empirical results will primarily focus on this equation.

Table 1 presents the Breusch-Godfrey LM test for first-order serial correlation in the
error term for each of the four equations. We see from the p-value that autocorrelation is
rejected at conventional confidence levels by the chi-square test of the null hypothesis of
no serial correlation. Hence, there is no evidence of dynamic misspecification.

Table 1
Breusch-Pagan LM Test of First-Order Autocorrelation”
Equation Chi-square p-value
(1) Supply 1.932 0.1645
(2) Biomass 0.131 0.7177
(3) Demand 0.101 0.7505
(4) Price margin 2.106 0.1467

“HO: No serial correlation.

Table 2 presents the econometric estimates from our model (1)—(4). The total explan-
atory power of the four equations is good. For the supply equation the R? is 0.94, while
for the other equations the R? is above 0.97. In all equations several of the lagged vari-
ables are statistically significant, indicating the importance of a dynamic specification.

In the supply equation we detect significant exogenous shifts in harvest during the
year. The coefficients associated with the monthly dummy variables state that harvest sup-
ply exhibits a particularly large positive shift compared with the base month January in the
last three months of the year, especially in December, due partly to the Christmas holiday.
Harvest supply also has a positive shift in March, which can be attributed to Easter.

Table 3 shows the short-run and long-run elasticities for the continuous explana-
tory variables of the supply equation and the rate of technical change. We see from the
table that although several of the elasticities are statistically significant at conventional
confidence levels (10% and below), the magnitude of the estimated elasticities is gener-
ally small. This is also the case for salmon price. A 1% increase in the sales price gives
a 0.091% increase in harvest in the short-run, and a 0.141% increase in harvest in the
long-run. If we compare our estimate to Andersen, Roll, and Tveteras (2008) supply elas-
ticities, it should be noted that their output price elasticity of 0.048 in the short-run and
1.415 in the long-run were based on annual data. It should also be noted that their supply
elasticities are related to ‘production,” which is defined as the harvest of salmon plus the
change in biomass from the beginning to the end of the year, while our supply elasticities
are only related to harvest.

The elasticity of salmon harvest supply with respect to the price of feed input is negative,
as predicted by theory, —0.052 in the short run and —0.082 in the long run. However, none of
these estimates are significantly different from zero at conventional confidence levels.
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Table 2

3SLS Estimates of the Econometric Model
Supply Equation (1)
Parameter Coeff. St.err. t-val. p-val.
Oy 0.358 0.074 4.87 0.000
o, 0.122 0.044 2.74 0.006
O 0.362 0.047 7.71 0.000
oy 0.215 0.038 5.63 0.000
Os 0.271 0.048 5.68 0.000
O 0.298 0.058 5.17 0.000
o, 0.221 0.066 3.36 0.001
O 0.278 0.068 4.1 0.000
Ol 0.337 0.062 5.44 0.000
oy 0.353 0.052 6.73 0.000
o 0.361 0.041 8.75 0.000
o, 0.456 0.032 14.07 0.000
Op 0.091 0.044 2.09 0.037
Oy —-0.053 0.089 -0.59 0.553
Oc -0.006 0.055 -0.11 0.914
O, 0.086 0.036 2.4 0.016
o 0.004 0.001 3.7 0.000
o 0.000 0.000 —-1.44 0.149
o 5.039 0.917 5.49 0.000
R2=0.942
Biomass Equation (2)
Parameter Coeff. St.err. t-val. p-val.
B, —-0.007 0.041 -0.18 0.861
B, -0.113 0.048 -2.35 0.019
By -0.230 0.053 -4.36 0.000
Bs -0.216 0.049 —4.45 0.000
Be -0.187 0.051 -3.66 0.000
B, 0.006 0.068 0.08 0.933
Bs 0.347 0.083 4.19 0.000
Bo 0.400 0.089 4.49 0.000
Bio 0.243 0.083 2.93 0.003
B 0.264 0.062 427 0.000
Bin 0.115 0.045 2.54 0.011
Bpo 1.071 0.079 13.62 0.000
Bgs -0.335 0.078 -4.28 0.000
Bp -0.242 0.132 -1.83 0.067
Bps 0.221 0.127 1.74 0.082
Be -0.232 0.084 -2.77 0.006
B, 0.003 0.001 3.12 0.002
By 0.000 0.000 -1.18 0.237
Bo 3.227 0.640 5.04 0.000

R?=0.975
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Table 2 (continued)

Demand Equation (3)

Parameter Coeft. St.err. t-val. p-val.
Sup1 0.489 0.068 7.14 0.000
SpENOR -0.615 0.135 —4.56 0.000
OpENORI 0.299 0.132 2.26 0.024
Spec —0.085 0.059 -1.45 0.146
SpEchi 0.127 0.057 2.24 0.025
SpEuK -0.010 0.068 -0.15 0.879
SpEuki 0.046 0.064 0.72 0.470
SpEcan -0.124 0.085 -1.45 0.146
OpECANI 0.059 0.088 0.67 0.503
o, 0.734 0.078 9.39 0.000
oy -0.363 0.095 -3.82 0.000
d, 0.101 0.030 3.41 0.001
d; 0.212 0.033 6.47 0.000
S, 0.124 0.024 5.17 0.000
d5 0.143 0.026 5.51 0.000
O 0.158 0.026 6.01 0.000
3, 0.100 0.026 3.82 0.000
g 0.137 0.029 4.65 0.000
Sy 0.216 0.027 8.15 0.000
S0 0.191 0.027 7.08 0.000
Sy 0.188 0.027 6.99 0.000
Sy, 0.224 0.032 6.97 0.000
d, 0.000 0.002 -0.24 0.812
Oy 0.000 0.000 0.86 0.392
S 0.956 1.070 0.89 0.371
R2=0.976

Price Margin Equation (4)

Parameter Coeff. St.err. t-val. p-val.
0p, 0.654 0.073 8.93 0.000
Oppn 1.733 0.131 13.26 0.000
Openi -1.296 0.107 -12.12 0.000
0y 1.731 0.186 9.29 0.000
0y, —1.408 0.173 -8.14 0.000
0, 0.008 0.014 0.60 0.552
0, 0.025 0.014 1.75 0.080
0, 0.020 0.014 1.38 0.169
05 0.020 0.015 1.36 0.175
06 0.011 0.015 0.78 0.436
0, 0.011 0.015 0.74 0.457
0q 0.040 0.014 2.79 0.005
0y 0.005 0.015 0.36 0.718
010 0.001 0.014 0.07 0.947
0, -0.001 0.014 -0.08 0.939
0., 0.014 0.014 1.02 0.308
0, 0.000 0.001 -0.54 0.586
0y 0.000 0.000 -0.12 0.903
0 —-0.061 0.097 -0.63 0.532
R?2=0.973

N = 135 observations.
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Table 3
Short- and Long-run Elasticities in the Harvest Supply Equation
Short Run Long Run
Variable Estimate p-value Estimate p-value
Salmon farm gate price 0.091™ 0.037 0.141™ 0.036
Feed price —-0.052 0.553 —0.082 0.553
Sea temperature —-0.005 0914 —-0.009 0.914
Biomass of live fish 0.086™ 0.016 0.134™ 0.020
Technical change 0.003™" 0.0001 0.005™" 0.0001

** Significant at the 5% level; " significant at the 1% level.

Sea temperature is generally expected to lead to an increase in salmon production, but
not necessarily harvest, as salmon grows faster at higher temperatures up to a certain level.
When temperatures are at their highest levels during the summer, farmers may have incen-
tives to harvest, since high densities of salmon in the cages lead to conditions that may
increase mortality and/or reduce growth rates, or because government regulations become
binding. But according to our estimates, sea temperature seems to have no statistically sig-
nificant effect on harvest supply. It may well be the case, however, that some of the effects
of temperature on harvest supply are captured by the monthly dummy variables.

A variable that matters more than temperature is the biomass of live salmon in the
previous month. The short-run elasticity is 0.086 and the long-run elasticity is 0.134%,
and both are statistically significant at the 5% level. Hence, an increase in biomass in the
previous month leads to a higher harvest of salmon, although the effect is rather small in
relative terms.

Innovations are expected to influence the supply of salmon over time. Our time trend
variables measure the effect of technological progress, and possibly innovations in organi-
zational or market factors, on salmon supply over time as the level of the other explanatory
variables; e.g., biomass of live fish, are held constant. The rate of technical change is 0.3%
in the short run and 0.5% in the long run, and both are statistically significant at the 1%
level. Although the estimated rates of technical change seem small, one must remember
that these are monthly figures—translated to 12 months, the rate of technical change in the
short run is 3.7%. Hence, there has been a significant influence from different innovations
on the harvest supply of salmon during the data period. This is in line with recent paramet-
ric productivity studies (Asche, Roll, and Tveteras 2009; Nilsen 2010).

According to the estimated biomass, equation (2), the stock of live salmon in cages
is strongly positively related to the biomass in the previous month, as could be expected a
priori. However, the relationship with the stock of live fish two months prior is negative.
The price of salmon has an ambiguous effect, as the current monthly price negatively
influences biomass, while the price in the prior month has a positive effect. There is a
significant negative relationship between the stock of live fish and sea temperature. This
may be due to farmers harvesting fish because of unsustainable concentrations of fish
with higher temperature, and/or because government regulations on fish densities or to-
tal biomass become binding in periods with higher temperature. It is interesting to note
that sea temperature seems to have more influence on the farms’ total biomass of live
fish than their harvest supply. The time trend variables indicate that innovations have
contributed to an increase in biomass conditional on the other variables (e.g., biomass
in previous month), but the rate of technical progress has declined over time. Finally,
monthly dummy variables indicate that the stock of live fish is generally kept below the
January reference month level in the first half of the year—conditional on the level of the
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other explanatory variables—while it is generally above the January reference level in the
last six months of the year.

The estimated demand equation (3) provides short- and long-run own-price elastici-
ties of —0.32 and —0.62, respectively, as shown in table 4. These are somewhat lower than
what has commonly been reported in the literature, but given that the demand for salmon
is becoming more inelastic and that demand elasticity is measured higher upstream than
in other studies, these estimates are reasonable. The elasticities associated with the price
of substitutes from other salmon-producing countries are generally not significantly dif-
ferent from zero. Again, this is not surprising at this level in the supply chain. An increase
in income, as proxied by the global salmon expenditures variable, leads to a positive shift
in salmon demand. The short-run and long-run income elasticities are 1.47 and 2.87, re-
spectively. The coefficients associated with the monthly dummy variables suggest higher
demand in March and the last three months of the year.

Table 4
Short- and Long-run Elasticities in the Harvest Demand Equation
Short Run Long Run
Variable Estimate p-value Estimate p-value
Norway salmon export price ~ —0.316™" 0.001 -0.618"" 0.0001
Chile salmon export price 0.042 0.231 0.082 0.226
UK salmon export price 0.036 0.589 0.070 0.584
Canada salmon export price —0.064 0.459 -0.127 0.460
Income 1.468™ 0.0001 2.869" 0.0001
Trend 0.0004 0.584 0.001 0.583

*** Significant at thel1% level.

According to the estimated price margin, equation (4), the long-run price transmis-
sion elasticity is 0.79, and not statistically different from 1. This is in line with the high
price transmission elasticity reported in Asche, Jaffry, and Hartman (2007). It is also as
expected, given that there is only one variable input factor in the short run (Asche et al.
2002). The long-run effect of depreciation of the Norwegian krone relative to the USD
also has a positive effect in the long run. This is as expected given the high degree of ex-
change rate transmission in the salmon market (Asche and Tveterds 2008).

Summary and Conclusions

The global supply of Atlantic salmon has increased from almost nothing in the early
1980s to a current level of about 1.5 million metric tonnes, with a farm gate sales value
of 8-9 billion USD. It is important to understand the short-term supply side determi-
nants of this growing industry, as this is an industry characterized by much volatility
in supply and price. Until now, econometric analyses of short-term market dynamics
in the salmon market using monthly data have focused mostly on the demand side. The
volatility in supply and price entails costs for agents in the value chain, particularly
since the salmon industry increasingly has been expected by processors and retail buy-
ers to provide a steady and predictable supply of salmon during the year with prices
that do not fluctuate too much.
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In this article we have exploited a unique monthly data set to estimate a system of
equations that include Norwegian farmed salmon supply. We find that there has been a
significant positive influence from different innovations on the harvest supply of salmon
during the data period. According to the estimated model, the farm gate sales price has
limited influence on the short-term monthly harvest supply of salmon as measured by
short- and long-run own price elasticities. The price of feed, the most important input in
salmon farming with a cost share of around 60%, has no significant effect on the short-
term harvest supply. Sea temperature influences the growth rate of salmon, but according
to our empirical estimates, this variable has no significant effect on monthly harvest sup-
ply. According to the estimated biomass equation, sea temperature seems to have a more
influential effect on the farms’ total biomass of live fish than their harvest supply. As
could be expected a priori, our estimated biomass equation also shows that the current
biomass is largely determined by the biomass in the previous month.

The biomass of live salmon has a statistically significant influence on harvest, but
again the effect on harvest supply is small as measured by the short- and long-run elas-
ticities. The coefficients associated with the monthly dummy variables in the estimated
supply model suggest that there are large seasonal exogenous shifts in supply that cannot
be explained by other variables. We suspect that the monthly dummy variables partly ac-
count for biological factors that provide incentives or disincentives to harvest, and partly
account for changing supply obligations manifested in contracts and changing market
conditions through the year.

An understanding of the role of prices in the supply of farmed salmon in the shorter
and longer term is best obtained by combining the findings from this article with the
findings from Andersen, Roll, and Tveteras (2008). In the short run, a time horizon of a
few months, the price of salmon has limited influence on salmon supply, as it is largely
determined by the existing stock of live salmon in the sea and exogenous factors in the
market. However, in reality salmon price provides farmers with strong incentives to ad-
just supply. For the longer run, a time horizon of around a year or more, the increased
ability to invest in fixed capital equipment and new biomass provides the farmer with
greater ability to act upon these incentives, as Andersen, Roll, and Tveteras (2008) have
found. Hence, as our time horizon moves from months to year, the importance of bio-
logical and other constraints is reduced, and salmon price becomes more influential as a
determinant of salmon supply.

Future innovations and sources of productivity growth that may influence supply can
come from a number of sources. Among the most interesting areas of innovation, but also
most controversial, is genetically modified fish (Smith et a/. 2010). Innovation is expected
to increase the salmon growth rate and reduce mortality rates, thus increasing productiv-
ity in salmon farm supply. However, it remains to be seen to what extent innovation will
change the price elasticity of supply in the short and long run.

References

Andersen, T.B., K.H. Roll, and S. Tveteras. 2008. The Price Responsiveness of Salmon
Supply in the Short and Long Run. Marine Resource Economics 23:425-38.

Asche, F. 2008. Farming the Sea. Marine Resource Economics 23:527-47.

. 2009. Adjustment Cost and Supply Response: A Dynamic Revenue Function.

Land Economics 85:201-15.

Asche, F., and T. Bjerndal. 2011. The Economics of Salmon Aquaculture, 2nd edition.
Oxford, UK: Wiley-Blackwell.

Asche, F., T. Bjorndal, and K.G. Salvanes. 1998. The Demand for Salmon in the Eu-
ropean Union: The Importance of Product Form and Origin. Canadian Journal of
Agricultural Economics 46:69-82.



356 Asheim, Dahl, Kumbhakar, Oglend, and Tveteras

Asche, F., H. Bremnes, and C.R. Wessells. 1999. Product Aggregation, Market Integra-
tion and Relationships between Prices: An Application to World Salmon Markets.
American Journal of Agricultural Economics 81:568-81.

Asche, F., O. Flaaten, J.R. Isaksen, and T. Vassdal. 2002. Derived Demand and Relation-
ships between Prices at Different Levels in the Value Chain: A Note. Journal of
Agricultural Economics 53:101-07.

Asche, F., and A.G. Guttormsen. 2001. Patterns in the Relative Price for Different Sizes
of Farmed Fish. Marine Resource Economics 16:235-47.

Asche, F., H. Hansen, R. Tveteras, and S. Tveteras. 2009. The Salmon Disease Crisis in
Chile. Marine Resource Economics 24:405—11.

Asche, F., S. Jaffry, and J. Hartman. 2007. Price Transmission and Market Integration:
Vertical and Horizontal Price Linkages for Salmon. Applied Economics 39:2535-45.

Asche, F., S.C. Kumbhakar, and R. Tveteras. 2007. Testing Cost Versus Profit Functions.
Applied Economics Letters 14:715-18.

Asche, F., K.H. Roll, and R. Tveteras. 2007. Productivity Growth in the Supply Chain—
Another Source of Competitiveness for Aquaculture. Marine Resource Economics
22:329-34.

. 2009. Economic Inefficiency and Environmental Impact: An Application to
Aquaculture Production. Journal of Environmental Economics and Management
58:93-105.

Asche, F., K.G. Salvanes, and F. Steen. 1997. Market Delineation and Demand Structure.
American Journal of Agricultural Economics 79:139-50.

Asche, F., and S. Tveteras. 2008. International Fish Trade and Exchange Rates: An Appli-
cation to the Trade with Salmon and Fishmeal. Applied Economics 40:1745-55.

Askari, H., and J.T Cummings. 1977. Estimating Agricultural Supply Response with the
Nerlove Model: A Survey. International Economic Review 18:257-92.

Austreng, R., T. Storebakken, and T. Asgard. 1987. Growth Rate Estimates for Cultured
Atlantic Salmon and Rainbow Trout. Aquaculture 60:157—60.

Eales, J., and C.R. Wessells. 1999. Testing Separability of Japanese Demand for Meat
and Fish within Differential Demand Systems. Journal of Agricultural and Resource
Economics 24:114-26.

Epple, D., and B.T McCallum. 2006. Simultaneous Equation Econometrics: The Missing
Example. Economic Inquiry 44:374-84.

Fofana, A., and S. Jaffry. 2008. Measuring Oligopsony Power of UK Salmon Retailers.
Marine Resource Economics 23:485-506.

Forsberg, O.1., and A.G. Guttormsen. 2006. The Value of Information in Salmon Farming,
Harvesting the Right Fish at the Right Time. Aquaculture Economics and Manage-
ment 10:183-200.

Guttormsen, A.G. 1999. Forecasting Weekly Salmon Prices: Risk Management in Salmon
Farming. Aquaculture Economics and Management 3:159-66.

. 2002. Input Factor Substitutability in Salmon Aquaculture. Marine Resource Eco-
nomics 17:91-102.

. 2008. Faustmann in the Sea—Optimal Rotation in Aquaculture. Marine Resource
Economics 23:401-10.

Heien, D. 1975. An Econometric Model of the U.S. Pork Economy. The Review of Eco-
nomics and Statistics 57:370-75.

Kinnucan, H.-W., and @. Myrland. 2002. The Relative Impact of the Norway—EU Salmon
Agreement: A Mid-term Assessment. Journal of Agricultural Economics 53:195—
219.

Kumbhakar, S.C. 2002. Specification and Estimation of Production Risk, Risk Preferenc-
es and Technical Efficiency. American Journal of Agricultural Economics 84:8-22.

Kumbhakar, S.C., and R. Tveteras. 2003. Risk Preferences, Production Risk and Firm
Heterogeneity. Scandinavian Journal of Economics 105:275-93.




Short-Term Salmon Supply Drivers 357

Kvalay, O., and R. Tveteras. 2008. Cost Structure and Vertical Integration between Farm-
ing and Processing. Journal of Agricultural Economics 59:296-311.

Larsen, T.A., and F. Asche. 2011. Contracts in the Salmon Aquaculture Industry: An
Analysis of Norwegian Salmon Exports. Marine Resource Economics 26:141-49.
Nerlove, M. 1956. Estimates of the Elasticities of Supply of Selected Agricultural Com-

modities. Journal of Farm Economics 38:492-509.

. 1958. Distributed Lags and the Estimation of Long-run Supply and Demand Elas-
ticities. Journal of Farm Economics 40:301-11.

Nilsen, O.B. 2010. Learning-by-doing or Technological Leapfrogging: Production Fron-
tiers and Efficiency Measurement in Norwegian Salmon Aquaculture. Aquaculture
Economics and Management 14:97—-119.

Oglend, A., and M. Sikveland. 2008. The Behaviour of Salmon Price Volatility. Marine
Resource Economics 23(4):507-26.

Reithe, S., and R. Tveteras. 2000. Productivity in Organic and Conventional Salmon
Aquaculture. Stiftelsen for Samfunns- og Neeringslivsforskning, Report no. 34.

Smith, M.D., F. Asche, A.G. Guttormsen, and J.B. Wiener. 2010. Genetically Modified
Salmon and Full Impact Assessment. Science 330:1052-3.

Tveteras, R. 1999. Production Risk and Productivity Growth: Some Findings for Norwe-
gian Salmon Aquaculture. Journal of Productivity Analysis 12:161-79.

. 2000. Flexible Panel Data Models for Risky Production Technologies with an Ap-
plication to Salmon Aquaculture. Econometric Reviews 19:367-89.

. 2002. Industrial Agglomeration and Production Costs in Norwegian Salmon
Aquaculture. Marine Resource Economics 17:1-26.

Tveteras, R., and G.E. Battese. 2006. Agglomeration Externalities, Productivity and Tech-
nical Inefficiency. Journal of Regional Science 46:605-25.

Tveteras, R., and A. Heshmati. 2002. Patterns of Productivity Growth in the Norwe-
gian Salmon Farming Industry. International Review of Economics and Business
49:367-93.

Vassdal, T., and H.M. Serensen Holst. 2011. Technical Progress and Regress in Norwe-
gian Salmon Farming: A Malmquist Index Approach. Marine Resource Economics
26:329-41.

Vukina, T., and J. L. Anderson. 1993. A State-Space Forecasting Approach to Opti-
mal Intertemporal Cross-Hedging. American Journal of Agricultural Economics
75:416-24.

Wessells, C.R., and J.E. Wilen. 1994. Seasonal Patterns and Regional Preferences in Japa-
nese Household Demand for Seafood. Canadian Journal of Agricultural Economics
42:87-103.

Xie, J., HW. Kinnucan, and @. Myrland. 2009. Demand Elasticities for Farmed Salmon
in World Trade. European Review of Agricultural Economics 36:425—45.







