

Land-based farming of Arctic char in Iceland

Valdimar Ingi Gunnarsson

TEKMAR 2011: Britannia Hotell, Trondheim, tirsdag 6. og onsdag 7. desember 2011 Sikker teknologi og kontrollert produksjon i en turbulent tid for folk, fisk og miljø

Contents

- Production of Arctic char
- Arctic char farms in Iceland
- Land-based farms in 1990 and status 2011
- Positive trends from 1990
- Future production
- Increased competitiveness of land-based farms
- R&D work in Iceland
- Future land-based farms

Production of Arctic char in Iceland

Arctic char farms in Iceland

Arctic char farms in Iceland

- Arctic char farms
 - Ca. 15 farms
 - Two land farms produce about 1,000 tons each
- Tanks
 - Circular tanks constitute the most common rearing-tank design in Iceland, but raceways are also used in a few instances.
 - The volume of a single tank is from a few cubic metres up to more than 2,000 cubic metres.
 - The most common tank materials are concrete, fibreglass, flat and corrugated steel.

Arctic char farms in Iceland Íslandsbleikja ehf. (Samherji hf.)

Íslandsbleikja

- Largest producer of Arctic char in the world.
- 70% of total production in Iceland
- 2 juvenile farm locations
- 2 on-growing farms
- Fillets production
- Silfurstjarnan
 - On-growing farm

Íslandsbleikja

Arctic char farms in Iceland Islandsbleikja

Volume: 26,000 m³ Temperature 5.5-6.5°C Salinity 20-25 ppm Production capacity: 1,500 tons/year Volume: 25,000 m³ Temperature: 6-7°C Salinity 20-25 ppm Production capacity: 1,500 tons/year

Arctic char farms in Iceland Íslandsbleikja ehf. (Samherji hf.)

Arctic char farms in Iceland Fiskeldið Haukamýri

- Volume: 2,500 m³
- Production capacity: 250 tons/year
- Water source:
 - Freshwater and geothermal water
 - 300 L/sec, ca. 10°C
 - Water reuse

Land-based farms in 1990 and status 2011

Land-based farms in 1990 and status 2011

- Why are many of the land-based farms not in operation today?
 - Bankruptcy, some more than once
 - Very expensive, I0x higher investment cost than cage farms
 - Operating cost higher in landbased farms (pumping cost....)

Positive trends from 1990

- Concrete tanks in good condition after 25 years of operation
- Better utilization of water by oxygenation and aeration in tanks
- Increased density of fish in tanks
- Better self-cleaning of big tanks (2,000 m³)
- Improvement in logistic e.g. by pumping fish via effluent
- Trucking of live fish from farms to slaughterhouses

Production methods today

- Production methods in Iceland
 - Difficult to produce char in sea cages (low growth rate and high mortality)
 - Difficult to produce Arctic char in fresh water lakes (high temperature in summer time....)
 - 90% of Arctic char produced in land-based farms - one cage farm located in a lagoon

Rifós, location of cage

Silfurstjarnan produces Atlantic salmon, Arctic char, turbot and Atlantic halibut

Future production

Next step in up scaling Arctic char production

- The coming years will increase production capacity by expanding existing land-based farms
- Building new tanks or move tanks material from farms out of operation
- Tanks design:
 - Circular tanks and raceways
- Tanks material:
 - Tanks from farms out of operation: Enamelled steel, corrugated steel and fiberglass.
 - New tanks: concrete

Next step in up-scaling Arctic char production

- Production technologies
 - Moving from flow-through aquaculture systems
 - to partial reuse of water within tanks
 - or in adjacent tanks units
- Better utilization of water without biofilters
 - Increasing aeration and oxygenation in tanks
 - Solids capture and oxygenation/aeration of water before reuse

Er flytende lukket oppdrettsanlegg økonomiks forsvarlig?

	Oppdretts- mærer (2009G)	Flytende, lukket oppdrettsanlegg
Smolt	I,74	١,7
Fór	9,14	9,0
Forsikring (biomasse)	0,15	0, 1
Lønn	1,02	0,9
Helse	0,58	0,2
Rep. og vedlighold	0,58	0,2
Andre kostnader	0,88	2,0
Avskrivinger	0,44	1,34
Finans (anlegg)	0,93	2,68
	15,43	18,12

Referanse: Norsk fiskeoppdrett 36(7):20-21

Increased competitiveness of landbased farms

- Reduce depreciation/interest cost per kg fish produced
 - Build cheap land-based farms, e.g. without biofilters
 - Build bigger tanks (> 2,000 m³)
 - Increased production per cubic meter from ca. 40 kg up to 75 kg
 - Build land-based farms with a long lifetime (more than 50 year for tanks and pipes)
- Reduce energy cost per kg fish
 - Pumping cost
 - Oxygenation or aeration
 - Increasing reuse of water

Increased competitiveness of landbased farms

- Reducing feed cost
 - No overfeeding by better equipment for inspection
 - Better management of environmental factors affecting the feed conversion factor (temperature, oxygen, flow rate, water quality etc.)
- Reducing labor cost
 - Increase the productivity to levels seen in sea cage farms in Norway (>400 tons per man/year)
 - Increase technological standards
 - Increase size of the land-based farms and single tank volume, etc.

R&D work in Iceland

- Aim of one land-based project
 - Design based on the following key words: simple, cheap, safe and minimal environmental impact.
 - Organizing the farms to improve working conditions and increase productivity
 - Disseminate knowledge to farmers and identify important research and development work.

Future land-based farms

- Not the proper time to build new land-based farms
 - the challenge is to increase competitiveness of landbased farms with research and development work
- Work together to develop the future landbased farms

Thank you for your attention