## Fettfinneklipping og fiskevelferd

M. Andrews & P.J. Midtlyng

Norwegian School of Veterinary Sciences, Oslo, Norway



## Overview

- Project overview
- Project aims
- Experimental methods
- Scoring system
- Effect of water temperature on wound closure
- Conclusions



# Project overview

- Control of farm escapees is a priority for the Norwegian Seafood Federation (FHL).
- Potential negative impacts on the environment:
- Diseases and parasites
- Pollution and discharges
- Escaped fish/genetic interaction



# Project overview

- Is it possible to mark ALL farmed fish?
- Which marking method?
- → PIT tagging
- → Floy tagging
- → Panjet tattooing
- → Fin clipping
- Document and describe initial wound closure and healing processes following 100% adipose fin clipping.
- Determine what effect water temperature has on the wound closure and healing process.
- Determine the possible welfare aspects of this method.



# Experimental methods

- Transferred 204 Atlantic salmon parr (mean 36g; range 27-45g) into three 450 L tanks.
- Tanks were set at different temperatures (4, 10 and 14°C).
- The experiment commenced following a 1 week acclimation period.









- 100% adipose fin clipping was performed using scissors.
- Fish were returned to their respective tanks and observed.
- Sampling occurred at 2, 4, 6, 12, 18, 24, 30, 36, 48, 60 and 72h post-clip; six fish/group/timepoint.
- Samples were immediately placed in 10% formalin.
- And were processed at the University of Bern.
- Histology sections were prepared using H&E staining.
- Sections from each sample were then scored using an adapted scoresheet from a past project.





# Scoring system

 All parameters were scored using a linear scale ranging from 0 (abnormal/no recovery) to 30 (normal structure).

#### **Epidermis:**

| # | Parameter                | Description                                                                                           |
|---|--------------------------|-------------------------------------------------------------------------------------------------------|
| 1 | Structure                | All cell layers present incl. basal cell layer, round cells (w/ mucous cells), superficial cell layer |
| 2 | Thickness                | 'normal' thickness of the epidermis                                                                   |
| 3 | Prismatic<br>basal cells | Basal layer; normal = cuboidal/columnar cells                                                         |
| 4 | Cuboidal cells           | Middle layer; normal = round/cuboidal                                                                 |
| 5 | Superficial cell layer   | Uppermost layer; normal = elongated, flattened cells                                                  |
| 6 | Mucous cells             | Mucous cells are usually dispersed throughout the epidermis                                           |
| 7 | Infiltration             | Presence of granulocytes, lymphocytes & macrophages                                                   |



#### **Dermis:**

| #  | Parameter    | Description                                                                                                                              |  |
|----|--------------|------------------------------------------------------------------------------------------------------------------------------------------|--|
| 8  | Structure    | All cell layers present incl. basement membrane, pigment cell layer, stratum spongiosum (no scales), stratum compactum, hypodermal layer |  |
| 9  | Cell debris  | Presence of necrotic cells and cell debris incl. Eosinophilic staining amorphous material                                                |  |
| 10 | Infiltration | Presence of granulocytes, lymphocytes & macrophages                                                                                      |  |

#### Tissue:

| #  | Parameter         | Description                                                         |
|----|-------------------|---------------------------------------------------------------------|
| 11 | Pigment cells     | These cells are usually numerous throughout the dermis              |
| 12 | Revascularisation | Blood vessels in dermal layers                                      |
| 13 | Fibrous tissue    | Normal arrangement of the fibres representing the stratum compactum |



#### Normal adipose fin:

















































## Conclusions

#### Wound closure and healing

- By 72h post clipping:
- All temperature groups had fully closed wounds.
- Non-uniformity throughout most epidermal and dermal layers.
- Uneven thickness of the epidermal layer.
- Low numbers of mucous cells.
- Lack of pigment cells.



- Time until wound closure was shorter than expected
- The scoring system showed uniformity within groups.
- Decreased wound closure rates at lower temperatures.
- Longer exposure of the wound area results in large oedematous areas.



#### Fish welfare

- No behavioural changes were observed.
- Combining a number of routine procedures with fin clipping may reduce overall stress.
- Rapid wound closure may result in:
- time exposed to possible infectious agents.
- ↓ period of challenge to the osmotic balance.



## Further research

- Determine what effect lower quality water may have on the wound closure and healing rates.
- Conduct tagging in combination with vaccine trials to see if this alters the wound closure and healing rates.



# Thank you



